介绍
在计算机科学中,二分查找算法(英语:binary search algorithm),也称折半搜索算法(英语:half-interval search algorithm)、对数搜索算法(英语:logarithmic search algorithm),是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
步骤
- 有序序列
- 取中间元素
- 如果目标值等于中间元素,则找到目标值。
- 如果目标值较小,继续在左侧搜索。
- 如果目标值较大,则继续在右侧搜索
时空复杂度
时间复杂度:O(logN)
空间复杂度:O(1)
图解
实现
迭代方式
public int search(int[] nums, int target){
int lo = 0;
int hi = nums.length - 1;
while(lo <= hi)
{
int mid = (lo + hi) >>> 1;
if(nums[mid] < target) {
lo = mid + 1;
} else if(nums[mid] > target) {
hi = mid - 1;
} else {
return mid;
}
}
return -1;
}
递归方式
public int search(int[] nums, int target) {
return search(nums, 0, nums.length - 1, target);
}
public int search(int[] nums, int lo, int hi, int target) {
if (lo > hi) {
return -1;
}
int mid = (hi + lo) >>> 1;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] > target) {
return search(nums, lo, mid - 1, target);
} else {
return search(nums, mid + 1, hi, target);
}
}